121 research outputs found

    FRW Universe Models in Conformally Flat Spacetime Coordinates. I: General Formalism

    Full text link
    The 3-space of a universe model is defined at a certain simultaneity. Hence space depends on which time is used. We find a general formula generating all known and also some new transformations to conformally flat spacetime coordinates. A general formula for the recession velocity is deduced.Comment: 12 page

    Entropy creation inside black holes points to observer complementarity

    Full text link
    Heating processes inside large black holes can produce tremendous amounts of entropy. Locality requires that this entropy adds on space-like surfaces, but the resulting entropy (10^10 times the Bekenstein-Hawking entropy in an example presented in the companion paper) exceeds the maximum entropy that can be accommodated by the black hole's degrees of freedom. Observer complementarity, which proposes a proliferation of non-local identifications inside the black hole, allows the entropy to be accommodated as long as individual observers inside the black hole see less than the Bekenstein-Hawking entropy. In the specific model considered with huge entropy production, we show that individual observers do see less than the Bekenstein-Hawking entropy, offering strong support for observer complementarity.Comment: 13 pages. This is a companion paper to arXiv:0801.4415; Added reference

    Large-Scale Structure at z~2.5

    Full text link
    We have made a statistically complete, unbiased survey of C IV systems toward a region of high QSO density near the South Galactic Pole using 25 lines of sight spanning 1.5<z<2.81.5<z<2.8. Such a survey makes an excellent probe of large-scale structure at early epochs. We find evidence for structure on the 1535h115-35h^{-1} proper Mpc scale (H0100H_0 \equiv 100 km s1s^{-1} Mpc1{-1}) as determined by the two point C IV - C IV absorber correlation function, and reject the null hypothesis that C IV systems are distributed randomly on such scales at the 3.5σ\sim 3.5\sigma level. The structure likely reflects the distance between two groups of absorbers subtending  13×5×21h3\sim~ 13 \times 5 \times 21h^{-3} and 7×1×15h3\sim 7 \times 1 \times 15h^{-3} Mpc3^3 at z2.3z\sim 2.3 and z2.5z \sim 2.5 respectively. There is also a marginal trend for the association of high rest equivalent width C IV absorbers and QSOs at similar redshifts but along different lines of sight. The total number of C IV systems detected is consistent with that which would be expected based on a survey using many widely separated lines of sight. Using the same data, we also find 11 Mg II absorbers in a complete survey toward 24 lines of sight; there is no evidence for Mg II - Mg II or Mg II - QSO clustering, though the sample size is likely still small to detect such structure if it exists.Comment: 56 pages including 32 of figures, in gzip-ed uuencoded postscript format, 1 long table not included, aastex4 package. Accepted for publication in ApJ Supplement

    Growth factor in f(T) gravity

    Full text link
    We derive the evolution equation of growth factor for the matter over-dense perturbation in f(T)f(T) gravity. For instance, we investigate its behavior in power law model at small redshift and compare it to the prediction of Λ\LambdaCDM and dark energy with the same equation of state in the framework of Einstein general relativity. We find that the perturbation in f(T)f(T) gravity grows slower than that in Einstein general relativity if \p f/\p T>0 due to the effectively weakened gravity.Comment: 15 pages,1 figure; v2,typos corrected; v3, discussions added, accepted by JCA

    A river model of space

    Full text link
    Within the theory of general relativity gravitational phenomena are usually attributed to the curvature of four-dimensional spacetime. In this context we are often confronted with the question of how the concept of ordinary physical three-dimensional space fits into this picture. In this work we present a simple and intuitive model of space for both the Schwarzschild spacetime and the de Sitter spacetime in which physical space is defined as a specified set of freely moving reference particles. Using a combination of orthonormal basis fields and the usual formalism in a coordinate basis we calculate the physical velocity field of these reference particles. Thus we obtain a vivid description of space in which space behaves like a river flowing radially toward the singularity in the Schwarzschild spacetime and radially toward infinity in the de Sitter spacetime. We also consider the effect of the river of space upon light rays and material particles and show that the river model of space provides an intuitive explanation for the behavior of light and particles at and beyond the event horizons associated with these spacetimes.Comment: 22 pages, 5 figure

    Consistency test of general relativity from large scale structure of the Universe

    Get PDF
    We construct a consistency test of General Relativity (GR) on cosmological scales. This test enables us to distinguish between the two alternatives to explain the late-time accelerated expansion of the universe, that is, dark energy models based on GR and modified gravity models without dark energy. We derive the consistency relation in GR which is written only in terms of observables - the Hubble parameter, the density perturbations, the peculiar velocities and the lensing potential. The breakdown of this consistency relation implies that the Newton constant which governs large-scale structure is different from that in the background cosmology, which is a typical feature in modified gravity models. We propose a method to perform this test by reconstructing the weak lensing spectrum from measured density perturbations and peculiar velocities. This reconstruction relies on Poisson's equation in GR to convert the density perturbations to the lensing potential. Hence any inconsistency between the reconstructed lensing spectrum and the measured lensing spectrum indicates the failure of GR on cosmological scales. The difficulties in performing this test using actual observations are discussed.Comment: 7 pages, 1 figur

    Scaling in Numerical Simulations of Domain Walls

    Get PDF
    We study the evolution of domain wall networks appearing after phase transitions in the early Universe. They exhibit interesting dynamical scaling behaviour which is not yet well understood, and are also simple models for the more phenomenologically acceptable string networks. We have run numerical simulations in two- and three-dimensional lattices of sizes up to 4096^3. The theoretically predicted scaling solution for the wall area density A ~ 1/t is supported by the simulation results, while no evidence of a logarithmic correction reported in previous studies could be found. The energy loss mechanism appears to be direct radiation, rather than the formation and collapse of closed loops or spheres. We discuss the implications for the evolution of string networks.Comment: 7pp RevTeX, 9 eps files (including six 220kB ones

    Next-to-leading resummation of cosmological perturbations via the Lagrangian picture: 2-loop correction in real and redshift spaces

    Full text link
    We present an improved prediction of the nonlinear perturbation theory (PT) via the Lagrangian picture, which was originally proposed by Matsubara (2008). Based on the relations between the power spectrum in standard PT and that in Lagrangian PT, we derive analytic expressions for the power spectrum in Lagrangian PT up to 2-loop order in both real and redshift spaces. Comparing the improved prediction of Lagrangian PT with NN-body simulations in real space, we find that the 2-loop corrections can extend the valid range of wave numbers where we can predict the power spectrum within 1% accuracy by a factor of 1.0 (z=0.5z=0.5), 1.3 (1), 1.6 (2) and 1.8 (3) vied with 1-loop Lagrangian PT results. On the other hand, in all redshift ranges, the higher-order corrections are shown to be less significant on the two-point correlation functions around the baryon acoustic peak, because the 1-loop Lagrangian PT is already accurate enough to explain the nonlinearity on those scales in NN-body simulations.Comment: 18pages, 4 figure

    Is cosmology consistent?

    Full text link
    We perform a detailed analysis of the latest CMB measurements (including BOOMERaNG, DASI, Maxima and CBI), both alone and jointly with other cosmological data sets involving, e.g., galaxy clustering and the Lyman Alpha Forest. We first address the question of whether the CMB data are internally consistent once calibration and beam uncertainties are taken into account, performing a series of statistical tests. With a few minor caveats, our answer is yes, and we compress all data into a single set of 24 bandpowers with associated covariance matrix and window functions. We then compute joint constraints on the 11 parameters of the ``standard'' adiabatic inflationary cosmological model. Out best fit model passes a series of physical consistency checks and agrees with essentially all currently available cosmological data. In addition to sharp constraints on the cosmic matter budget in good agreement with those of the BOOMERaNG, DASI and Maxima teams, we obtain a heaviest neutrino mass range 0.04-4.2 eV and the sharpest constraints to date on gravity waves which (together with preference for a slight red-tilt) favors ``small-field'' inflation models.Comment: Replaced to match accepted PRD version. 14 pages, 12 figs. Tiny changes due to smaller DASI & Maxima calibration errors. Expanded neutrino and tensor discussion, added refs, typos fixed. Combined CMB data, window and covariance matrix at http://www.hep.upenn.edu/~max/consistent.html or from [email protected]

    Planck-scale quintessence and the physics of structure formation

    Get PDF
    In a recent paper we considered the possibility of a scalar field providing an explanation for the cosmic acceleration. Our model had the interesting properties of attractor-like behavior and having its parameters of O(1) in Planck units. Here we discuss the effect of the field on large scale structure and CMB anisotropies. We show how some versions of our model inspired by "brane" physics have novel features due to the fact that the scalar field has a significant role over a wider range of redshifts than for typical "dark energy" models. One of these features is the additional suppression of the formation of large scale structure, as compared with cosmological constant models. In light of the new pressures being placed on cosmological parameters (in particular H_0) by CMB data, this added suppression allows our "brane" models to give excellent fits to both CMB and large scale structure data.Comment: 18 pages, 12 figures, submitted to PR
    corecore